Flowers of Ice—Beauty,
Symmetry, and Complexity:
A Review of The Snowflake:
Winter’s Secret Beauty

Reviewed by John A. Adam

rowing up as a child in southern Eng-
land, my early memories of snow in-
clude trudging home from school with
my father, gazing at the seemingly enor-
mous snowdrifts that smoothed the
hedgerows, fields and bushes, while listening to the
soft “scrunch” of the snow under my Wellington
boots. In the country, snow stretching as far as I
could see was not a particularly uncommon sight.
The quietness of the land under a foot of snow
seemed eerie. I cannot remember the first time I
looked at snowflakes per se; my interests as a
small child were primarily in their spheroidally
shaped aggregates as they flew through the air.
Many years later, as I cycled home from my office
in Coleraine, Northern Ireland, I remember being
intrigued by a colored blotch of light to the west
of the Sun at about the same elevation. Little did I
know then that these two events of snowfall and
“sundogs” (of which more anon) were intimately
connected. Since that time I have learned rather
more about meteorological optics, and this book
about the beauty of snowflakes has challenged
me to learn more of the physics and mathematics
behind crystal formation in general and ice crys-
tal formation in particular.
As in an earlier review [1], I will divide this
review into two main sections; Libbrecht’s book
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contains no mathematics, so the first section will
address the qualitative features of snow and
snowflakes discussed by the author. I will draw
on some of the general descriptions of snow and
its properties both from this book and those by
others mentioned below. I have decided to comment
on every chapter individually, because each can
be treated to some extent independently of the
others. The second section takes the form of a
mathematical appendix devoted to an outline of
some of the mathematical aspects of crystal for-
mation, with particular emphasis on ice crystals.
In some sense, I hope, this will become a parallel
“mathematical universe” to the first section.
However, the growth of crystals is a complex
combination of thermodynamics and statistical
physics, and no review of this nature could do
justice to the immense theoretical edifice that has
been erected on this topic.

This slim volume is informally yet clearly writ-
ten, and the photographs (mostly taken by Patricia
Rasmussen) are quite stunning. Obviously, it is
aimed at a popular audience. In one sense, though,
itis the latest in a disjoint set of popular books on
pattern formation in nature: D’Arcy Thompson’s
On Growth and Form [38]; Stevens’s Patterns in
Nature [32]; Ball’s The Self-Made Tapestry [3];
Stewart’s Nature’s Numbers [33] and What Shape Is
a Snowflake? [34]; and finally, from a very differ-
ent perspective, Bejan’s constructal theory as ex-
pounded in Shape and Structure, from Engineering
to Nature [5]. With the exception of [34], none of
these address the nature of the snowflake to any
great extent. Some of Libbrecht’s low-key yet vivid
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descriptions captured my imagination, and I would
certainly recommend this book to any person
wishing to “experience” something of the physical
intuition of a scientist.

As might be expected, the study of snowflakes
is not new; no doubt people have been fascinated
by their beauty and symmetry since time im-
memorial. According to [4], [16] the Chinese aware-
ness of this was recorded in 135 B.C., while in
Europe the Dominican scientist, philosopher, and
theologian, Albertus Magnus, studied them around
1260 A.D. Not surprisingly, the astronomer and
mathematician Johannes Kepler was intrigued by
snow crystals, writing a small treatise entitled On
the Six-Cornered Snowflake. In 1611 he asked the
fundamental question: There must be some definite
cause why, whenever snow begins to fall, its initial
formation invariably displays the shape of a six-
cornered starlet. For if it happens by chance, why
do they not fall just as well with five corners or
seven?In his treatise he compared their symmetry
with that of honeycombs and the seed arrangement
inside pomegranates [4]. However, nothing was
known in Kepler’s era of the molecular structure
of water, which ultimately determines the hexag-
onal shape of ice crystals, so Kepler was unable to
explain their shape in mechanical terms, though he
did attempt to do so using entirely reasonable
packing arguments. (Indeed, finding the densest
(not necessarily periodic) packing of spheres is
now known as the Kepler problem [14].) In 1665 the
scientist Robert Hooke published
Micrographia, in which he described his observa-
tions of snowflakes using a microscope. More his-
torical details may be found in [4].

In the first chapter of The Snowflake (“The Cre-
ative Genius”), the author asks the fundamental
questions: How do crystals grow? Why do complex
patterns arise spontaneously in simple physical sys-
tems? These are very profound questions, of course,
and a considerable portion of past and present lit-
erature in applied mathematics and theoretical
physics is devoted to attempting to answer them.
Obviously, the second question goes well beyond
the “mineral kingdom” of crystal formation into the
“animal and vegetable” ones of patterns in (and on)
living things. In particular, though, Libbrecht re-
minds the reader that snowflakes are the product
of a rich synthesis of physics, mathematics, and
chemistry and that they are even fun to catch on
one’s tongue! The range of such comments reflects
the underlying parallel approaches of the book: on
the one hand, a good qualitative and nontechnical
description of the scientific aspects of snowflake
formation and, on the other, the sheer fun of doing
science. It is worth noting that in Libbrecht’s ter-
minology, snow crystal to snowflake is as tulip to
flower. In other words, a snowflake can be an
individual snow crystal or collection of the same,
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depending on context. The two words will be used
synonymously here unless otherwise noted.

The short Chapter 2 is entitled “Snowflake
Watching”. In it, Libbrecht records a partial history
of snowflake watchers from Descartes to the
present day. In particular, he makes mention of
Wilson Bentley, a Vermont farmer who dedicated
much of his life to photographing snowflakes. In
the late 1920s Bentley worked with physicist W. J.
Humphreys to publish a book containing more
than 2,000 of his snow crystal images. (There is a
1962 Dover edition of this book, Snow Crystals.) The
scientific discussion begins in earnest in the third
chapter (“Snow Crystal Symmetry”). It starts with
the following quote from Richard P. Feynman (The
Feynman Lectures on Physics, 1963):

Poets say science takes away from the
beauty of the stars—mere globs of gas
atoms. I too can see the stars on a desert
night, and feel them. But do I see less
or more?... What is the pattern, or the
meaning, or the why? It does not do
harm to the mystery to know a little
about it. For far more marvelous is the
truth than any artists of the past imag-
ined it.

A quote from Kepler in 1611 is included as he
pondered the sixfold symmetry of snowflakes, and
although Libbrecht makes no mention of it, a quote
from D’Arcy Wentworth Thompson [38] is partic-
ularly appropriate here:

The beauty of a snow-crystal depends
on its mathematical regularity and sym-
metry; but somehow the association
of many variants of a single type, all
related but no two the same, vastly
increases our pleasure and admira-
tion....The snow-crystal is further
complicated, and its beauty is notably
enhanced, by minute occluded bubbles
of air or drops of water, whose sym-
metrical form and arrangement are very
curious and not always easy to explain.
Lastly, we are apt to see our Snow crys-
tals after a slight thaw has rounded
their edges, and has heightened their
beauty by softening their contours.

Returning to the question of complex patterns
in nature, we may not be surprised to be reminded
by Libbrecht that all crystals demonstrate the or-
ganizational ability to self-assemble. Starting with
arandom collection of molecules, this is an example
of spontaneous pattern formation. The best non-
mathematical book I know on the broad spectrum
of pattern formation is The Self-Made Tapestry[3],
and the present book, much narrower in scope, is
a good introduction to some of the underlying
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concepts explained therein. For example: Libbrecht
does a pretty good job of explaining to a nontech-
nical readership the physics of crystal facets and
their formation. One basic snow crystal shape is the
hexagonal prism, which possesses two basal facets

and six prism facets, and de-
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Winter's Secret Beaury {| moving facets eventually de-

pending on which of the two
types grows faster, the prism
can become a long column
or a thin plate. The slowest

fine the shape of the crystal.
At this point the author asks
a very significant question:
How can molecular forces,
operating only at the
nanoscale, determine the
shape of large crystals? An-
swers to this and related
questions are hinted at in the
following two chapters.
And so to Chapter 4 (“Hi-
eroglyphs from the Sky”), in
which it is stated that the real
puzzle of snowflakes is their
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combination of symmetry
and complexity and that major progress in solving
this puzzle was made by the physicist Nakaya in
the 1930s. Eventually, he succeeded in growing in-
dividual snow crystals in his laboratory under many
different humidity levels and temperatures, and it
was only a matter of time before he was able to clas-
sify the symmetry and considerable variety dis-
played by these crystals. He developed his famous
morphology diagram, demonstrating the remark-
able sensitivity of the snow crystal form to its en-
vironmental conditions. This diagram is repro-
duced on page 45 of The Snowflake. Basically, at
low but fixed levels of supersaturation (degree of
humidity), as the temperature decreases below 0°C
to about -35°C, snow crystals are essentially plates,
then solid prisms, and then plates again. At higher
supersaturation levels, the evolution is from den-
drites to needles, hollow columns, sectored plates
and dendrites, and then columns again. Essentially,
the overall crystal shape, whether it is platelike or
columnar, reveals something about the temperature
at which the crystal grew, and the complexity of the
structure indicates something about the humidity.
However, each crystal falling on one’s nose is a
product of the cumulative history it has under-
gone as it has been wafted hither and yon by air
currents through many different atmospheric con-
ditions. In mathematical terms, we might think of
its shape being defined by a line integral over its
path through space and time. Generally, the length
scale of variations of temperature and humidity will
be much larger than the dimension of the crystal,
so each vertex or arm of the crystal experiences the
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same conditions at each
moment of time; their
symmetry is evidently a
reflection of their shared
history.

It should be noted that
while Nakaya’s 1954 book
Snow Crystals: Natural
and Artificial is referred
to on page 44, no men-
tion is made of the im-
portant work by Furukawa, who studied under
Kuroda and Kobayashi, both of whom were students
of Nakaya. Many valuable details and references on
the history and science of snow crystal research can

be found in Furukawa’s essay (http://www.|
[lowtem.hokudai.ac.jp/~frkw/english/|

[aletter.html).

In Chapter 5 (“Morphogenesis on Ice”) the search
for an explanation of snow crystal complexity is
taken yet further. Touch-
ing on a point made ear-
lier in this review, Lib-
brecht temporarily
broadens his perspective
by noting that while a
flower is an example of
biological morphogene-
sis, even simpler physical
systems exhibit this fea-
ture. Thus whether it be
waves on the oceans or
ripples on snowdrifts and sand dunes, they are all
relatively simple pattern-forming systems in which
complexity arises spontaneously, but for Libbrecht
the snowflake is the poster child of morphogene-
sis. Here as in earlier chapters he does a good job
of introducing the concept of self-organization in
physical (and, in passing, biological) systems. This
is all to the good, given the preoccupation in some
quarters with the concept of “intelligent design”
(with all due respect to my fellow Christians). In a
sentence that I find very
appealing, Libbrecht notes
that instabilities like those
discussed here are the
heart of pattern formation,
and nature is one unstable
system heaped on top of
another.

Scientifically, the real
meat of the book is to be

The three photographs of snowflakes (above)
were provided by Yoshinori Furukawa of
Hokkaido University, who also provided the
photographs from which the background
snowflakes came. The ordinary symmetry of
snowflake growth is really extraordinary.
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found in this chapter. There are several key com-
ments made by Libbrecht that bear repeating as
written: Growth is the key ingredient for the gen-
eration of snow-crystal patterns. Left in isolation for
a long time, an ice crystal will eventually turn into
a plain hexagonal prism....Ornate patterns appear
only when a snow crystal is out of equilibrium,
while it is growing. Such circumstances are often
referred to as nonequilibrium conditions. Another
important concept introduced is that of diffusion-
limited growth. A snow crystal grows by assimilating
molecules of water vapor into the existing ice
lattice, provided the humidity is high enough. How-
ever, continuing crystal growth gradually depletes
the vapor from layers of air adjacent to the crys-
tal, and the remaining water vapor molecules must
diffuse over increasingly larger distances. Since
the travel time for diffusion (other things remain-
ing unchanged) is proportional to the square of
the distance traveled, it is clear that the growth rate
of the crystal will be inhibited; the growth is now
diffusion-limited.

An initial “seed” crystal consisting of several
hundred or thousand molecules has a molecularly
rough boundary. Depending on the crystallographic
orientation, some orientations may grow more
rapidly than others (under a spatially uniform
growth drive), and thus a surface is created with
both positive and negative curvature. “Flatter” por-
tions of the boundary are called facets, and while
a completely rough seed will not have facets, it may
still grow anisotropically. The curved regions “fill
in” more readily than the facets, from which it is
seen that ultimately the slower-growing facets
define the crystal shape in the absence of signifi-
cant branching (a mechanism discussed below).
Combining the above two mechanisms, in diffusion-
limited growth one might expect that the crystal ver-
tices would “harvest” water vapor molecules faster
than facets by virtue of their projection further
into the medium (if the mean free path of the
vapor phase is of order the size of the system).
This can induce a positive feedback loop known
as a branching instability. As will be noted in the
second section of this review, if this instability
occurs, there is usually a self-limiting stabilizing
mechanism, akin to surface tension, that eventually
balances the destabilizing one. If this diffusion-
limited branching instability is iterated over and
over, a type of snow crystal known as a dendrite will
develop. Ultimately, this may give rise to some kind
of self-similar or fractal-like structure over several
orders of magnitude of scale, not unlike a fern leaf.
This branching process is more pronounced in
regions of higher vapor pressure, since then the
diffusive transport of water vapor molecules is
more effective. Conversely, faceted growth is more
likely to occur in a lower vapor pressure environ-
ment. Ultimately, the complex interplay between
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faceting and branching is what determines the
form of a given snow crystal in a kind of morpho-
logical balancing act, and this in turn depends on
the temperature and humidity history of the grow-
ing crystal and also its size. Libbrecht speculates
that if snowflakes occur in other planetary atmos-
pheres, they may well be different from the ones
we know and love.

Although he does not identify it as such, the
branching instability Libbrecht refers to is the
Mullins-Sekerka instability (see the second section
of this article for more details). Nobody could fault
him for simplifying physical phenomena in a
book of this kind, but as he implies elsewhere, the
picture is just not that straightforward. Indeed, I
am indebted to Professor J. S. Wettlaufer for the
following comment (in reference to a statement
made in [2]) that puts into perspective the com-
plexity of the problem:

The initial question that needs to be
asked is: How does a hexagon emerge
from a nucleus of some 1,000 mole-
cules that, at the point of nucleation, do
not necessarily reflect that symmetry?
This has nothing whatever to do with the
structure of the background diffusion
field, but rather it is solely controlled by
the statistical mechanics of adsorbates
on the seed. The seed is much smaller
than the mean free path in the vapor
phase. The enhancement of the vapor
field at a corner, generically understood
as the “point effect of diffusion” or the
“Berg-effect”, may or may not lead to an
instability. The conditions must be
carefully determined; for example, is
the size of the seed much smaller than
the characteristic scale of the diffusion
field? There is a plethora of outstand-
ing physical and mathematical prob-
lems related to the transition between
nucleation, interface controlled growth
and diffusion limited shapes. Therefore,
if and/or when a diffusive/Mullins-
Sekerka instability occurs, understand-
ing the habit of the crystal still requires
an understanding of the initial value
problem and thus the evolution of a
crystal from its birth.

In Chapter 6 (“Snowflake Weather”) Libbrecht
makes some statements about snow crystal quan-
tities that might form the basis for several inter-
esting estimation problems, but first it is necessary
to note some facts about snow. Consider first a
small ice cube 1 cm? in volume. This has a mass
of one gram, and since the mass of a water mole-
cule is about 3 x 1023g, there are about 3 x 10?2
molecules in this ice cube. A typical snow crystal
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of mass 3 x 1072 g therefore may contain about
10'® molecules. Depending on the type of crystal,
temperature, wind speed, and other factors, in-
cluding the density of packing, snow has consid-
erable variation in its water content. An eight-foot
blanket of fresh snow may contain as little as 1 inch
of water per unit of surface area or as much as 3
feet. According to [16], the majority of U.S. snows
have a water-to-snow ratio in the range of 0.04 to
0.10. T had to dig around for most of this infor-
mation; I wish that facts such as these had been
incorporated into the book as an appendix.

In the beginning of this chapter we read:
Snowflakes are being manufactured in the atmos-
phere at an astounding rate—around a million
billion crystals each second. Every ten minutes that’s
enough snow to make an unstoppable army of snow-
men, one for every person in the world.... Let’s think
about this: on the basis of these numbers, after ten
minutes there are about 10> x 6 x 10> = 6 x 107
crystals, and estimating a typical snowman to be
composed of two identical spheres of diameter 1.5
ft. gives a volume of about 3.5 ft.? or approximately
3.5 % (0.3)° =~ 0.1 m3 = 10% cm3. If we assume that
all the crystals formed make their way to the ground
(arather dubious assumption) and take an average
water-to-snow ratio of 0.07 for U.S. snow (!), then
the mass of crystals falling in a ten-minute inter-
val is approximately 2 x 10'3g. Meanwhile, the mass
of our typical snowman is given by the product
10° x 0.07 = 7 x 10*g. This means our army of

snowmen numbers about 3 x 10?, or about one
half of the present world population. A factor of
two is not a large discrepancy in this context, and
in any case, that’s a lot of snowmen. (There is a de-
lightful “Peanuts” cartoon showing a vast army of
snowmen built on a cloudy day by that precocious
genius, Linus. He marches up and down declaring
their military invincibility under any and all cir-
cumstances. Then the Sun comes out. I use this par-
ticular cartoon in mathematical modeling classes
to emphasize the dangers of making false (or at
best, weak) assumptions.)

Later, another estimation beckons us. Libbrecht
states that the total global precipitation per day is
equivalent to about 10" liters of water, and each
of us typically exhales about 1 liter of water per day
into the atmosphere. By simple proportion, there-
fore, and using his figures, we infer that if our
contribution to the water cycle were uniformly dis-
tributed around the globe (seemingly yet another
flawed assumption), then our average contribu-
tion to the total water content of a snow crystal is
about 10'® +~ 10" = 10° molecules. On this num-
ber, not surprisingly, we agree.

The chapter closes with a nice little section
about ice nucleation: how water molecules, like
adolescents, eventually learn to settle down and
become very cool (or freeze, in the case of the
former). There is also a rather intricate table
classifying some of the many types of snow.

Chapter 7 (“A Field Guide to Falling Snow”) is by
far the longest in the book and is ac-
companied by many beautiful pho-
tographs. We are introduced to a verita-
ble zoo of snow crystals: diamond dust
(of which cirrus clouds are made), stellar
dendrites, sectored plates, columns and
needles, hollow columns, needles and
bullets, capped columns, split stars and
split plates, twinned crystals, twelve-sided
snowflakes and double stars, chandelier
crystals, spatial dendrites, triangular crys-
tals, and rimed snowflakes!

What type of ice crystal then was re-
sponsible for the sundog I mentioned
earlier (such patches of colored light are
also known as mock suns or parhelia)? Bil-
lions of slowly falling horizontally ori-
ented hexagonal plate like crystals (pre-
sent in cirrus clouds) 30 microns or larger
are the culprits. They behave like tiny
prisms and refract light entering one ver-
tical face (say face 1) and exiting face 3.
Unlike rainbow formation, there is no re-

flection involved, and so the red portion

This photograph of atmospheric halos was taken at the South Pole, where 1s always closest to the Sun. They occur
conditions are frequently favorable. It was provided by Walter Tape, now atleast 22° away from the Sun. There are

at the University of Alaska in Fairbanks. It is one of many photographs in many other related phenomena one may
his book [35]. ©observe, such as ice crystal halos, and
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This drawing of halos was made in Danzig,
1661 by the astronomer Hevelius. It is one of
several early records described in the book on
meteorological optics by J. M. Pernter and F. M.
Exner.

some of them very rare. A common example is the
22° halo around the Sun (or the Moon, but it is much
fainter for obvious reasons). However, only small
(less than about 20 microns in size) columnar crys-
tals are responsible for this particular optical man-
ifestion. Again, light is refracted between alternate
faces of the hexagonal columns, but the crystals are
small enough to tumble, and so are randomly ori-
ented as they fall. I see these halos, or parts of them,
at least once a month on the average, and some-
times they can last for an hour or two. There are
many other types of halos; details and further ref-
erences may be found in [2] and [35]. A general
mathematical setting for halo theory is available in
[36] (see also [18], in which the use of symmetry
arguments is further explored, together with some
speculations on possible halo forms produced in
the atmosphere of Titan!)

In passing, Libbrecht briefly addresses the ques-
tion: Why (not who) is snow white? To which we may
add: Why does it seem so quiet outside after a
snowfall? In fact, let us generalize the first ques-
tion by asking why it does appear white, while ice
(in sufficient quantities, as in a glacier) appears
somewhat blue in color. Snow is made of small crys-
tals of ice, as we well know by now. There are myr-
iads of tiny surfaces from which light is reflected,
resulting in a very efficient scattering process in
which very little absorption takes place. This high
reflectivity, incidentally, is also the main reason why
snow is melted more by warm air than by direct sun-
light. By contrast, ice is a continuous medium (on
the scale of ice crystals, at least), and so sunlight
is more readily absorbed because of the longer
path-length between scattering centers. Blue light
is absorbed rather less efficiently than are longer
wavelengths, but this is not obvious in something
as small as an ice cube! Large quantities of ice
allow an accumulation of the effects of scattering
and absorption by not only the ice molecules but
the plentiful supply of dust, air bubbles, and other
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particulate matter. As to the question not asked
in the book: sound waves are readily absorbed by
a thick covering of fresh snow, because all the
air pockets are prone to trapping the waves to a
certain extent. As noted in [16], as snow ages, it
changes from being light and fluffy to smooth and
hard, and in this state it can become an efficient
reflector of sound waves, and sounds may seem
clearer and be heard from greater distances.

Chapter 8 (“In Search of Identical Snowflakes”)
addresses what might be termed “the question we
have all been waiting for”: Is every snowflake
unique? In a recently used phrase, the answer to
this question depends on what is meant by the
word “is”. Less flippantly, the answer does depend
on how powerful a “magnifying glass” one wishes
to use to provide an answer. It is an axiom of fun-
damental physics that all electrons are identical,
so at this scale the components of all snowflakes
are identical. However, since this applies to ele-
phants and teapots as well, the concept is not par-
ticularly helpful. Moving up in size from electrons,
it is also true that “ordinary” (as opposed to
“heavy”) water molecules are identical. Heavy water
is water composed of deuterium, a stable isotope
of hydrogen, occurring with a frequency of about
one deuterium atom for every 5,000 of the lighter
hydrogen atoms. Another stable isotope of oxygen
has a relative frequency of occurrence of about
one in 500, so while a snow crystal might contain
water molecules, about 1 in 500 water molecules
will be different from the rest. The number of con-
figurations containing these heavier oxygen atoms
is combinatorially enormous, so the likelihood of
two snowflakes being identical is equivalent to
that of the sustained existence of the proverbial
snowhball in the proverbial very hot place. But as Lib-
brecht reminds us, crystals contain impurity atoms,
stacking faults, and other types of defects. And this
does not help matters, to say the least.

If we relax our requirement of mathematical
uniqueness at the atomic and molecular level, using
a good optical microscope with resolution down to
about 1073 mm, it might well be possible to find
two hexagonal plates that appear indistinguish-
able, but the more complex crystals are very intri-
cate, with all sorts of minor asymmetries, so the
problem gets worse again. Just as with the early
stages of male pattern baldness, it all depends on
how closely one looks.

The “afterword” by photographer Patricia Ras-
mussen is beautiful, not least because of her
obvious love for poetry. And with mention of
the word beauty, it is appropriate to quote both
Poincaré (as stated in Chapter 8 of the book) and
Kenneth Libbrecht himself as he ends this, his last
chapter.
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Figure 1: The equilibrium crystal shape (for cubic
symmetry) formed from the Wulff construction; the
boundary is shown in bold. It is the interior envelope of
the set of perpendiculars to radial rays intersecting the
y(N) (surface free energy) polar plot.

(From [43].)

The scientist does not study nature be-
cause it is useful; he studies it because
he delights in it, and he delights in it
because it is beautiful. (Jules Henri
Poincaré, 1908)

There is great beauty in a large, sym-
metrical stellar crystal. The beauty is en-
hanced by the magnifying lens that
brings out the fine structures in the ice.
The beauty is enhanced still further by
an understanding of the processes that
created it. (Kenneth G. Libbrecht, 2003)

Is Seeing Believing?

By searching through both old and
recent snowflake photographs with
a computer search tool specially
designed for the task, candidates for
indistinguishable flakes have been
found. Because of the poorer quality
of the picture on the left, however,
some difficult work remains to be
done. These photographs were
taken on the first day of April, which
might account for the similarity of
the flakes.

A last word on the topic of snow crystals may
be of interest:

Thanks to the sharp eyes of a Minnesota man,
it is possible that two identical snowflakes may fi-
nally have been observed. While out snowmobiling,
he noticed a snowflake that looked familiar to him.
Searching his memory, he realized it was identical
to a snowflake he had seen as a child in Vermont.
Weather experts, while excited, caution that this
may be difficult to verify.

See more about snow crystals on Kenneth Lib-
brecht’s website|www. snowcrystals.net.

Mathematical Appendix

A snow crystal pattern is an interfacial phenome-
non, occurring at the boundary between the solid
phase and vapor phase of water. By contrast, an ice
crystal grows at a solid/liquid boundary. There is
a plethora of theoretical papers on the subject of
crystal formation (for a sample, see the references),
only a small proportion of these, understandably,
being devoted to snow or ice crystals. I will at-
tempt to provide a general overview of the topic
and then address some of the particular models of
snow and ice crystal formation.

As noted already several times, many nonbio-
logical patterns in nature arise at the moving
interface between two domains or phases, such as
an ice-water vapor boundary, with competition
between forces tending to stabilize and destabilize
the boundary. However, in contrast to complex
biological systems, crystal growth perhaps repre-
sents a conceptually simpler example of sponta-
neous pattern formation and self-organization,
based on the existing “laws” of thermodynamics,
statistical mechanics, kinetics, and transport the-
ory. Nevertheless, many of the theoretical problems
associated with these phenomena are quite formi-
dable mathematically.

A snowflake with its planar hexagonal symme-
try is a good illustration of some of the questions
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that can be asked in a more general context. They
are patterns that have emerged, apparently, from
a structureless environment, and as has been
noted previously, they are very sensitive to that
environment. Depending on the history of each
ice crystal as it moves through regions of differ-
ent temperature, supersaturation, and airspeed,
there will be formed several different types of ice
structure; and since each history is (presumably)
unique, so in principle is each snow crystal.

According to the review by Langer [19], regularly
faceted crystals will form under a wide variety of
conditions when the molecules are tightly bound
on crystallographic planes. At the other extreme,
when the surface molecular binding is sufficiently
weak (as in many metals and alloys), growth is
dominated by the mechanism of diffusion close to
the solidification front (and may be rapid). In such
cases, the fluid-solid interfaces are macroscopi-
cally smooth but microscopically rough. Ice falls
between these two extremes: facets grow slowly
parallel to the basal plane, but rapidly in the hexag-
onal directions, and surfaces tend to be rounded.

There are two basic types of mechanism that
contribute to the solidification process: diffusion
control (involving long-range processes) and in-
terface control (involving local processes). In [42],
models based on these mechanisms are referred to
respectively as nongeometric and geometric growth
models. In the latter, the interfacial growth veloc-
ity is determined by local conditions only, and
hence diffusion-driven morphological instabilities
are absent. However, even this is something of an
oversimplification, because a geometric model may
be used to examine diffusion-limited growth if
the interfacial speed is sufficiently large. (In this
context the appropriate length scale L is essentially
the diffusivity divided by the interface speed; large
gradients can exist, and the boundary layer of
thickness L effectively defines the interfacial re-
gion.) A model is considered geometric if the
normal velocity at an interfacial point depends
only upon the shape and shape-dependent quan-
tities of the interface.

By contrast, nongeometric models pertain to
growth on surfaces that are everywhere rough and
are usually formulated as some type of free bound-
ary problem. It transpires that such diffusion-
controlled models of simple geometric shapes such
as planes, cylinders, and spheres are commonly
unstable. For example, if a plane solid interface
develops a small bump extending into the vapor
phase or liquid phase, the temperature gradient is
locally larger than in its immediate neighborhood
(because the isotherms are closer at that point),
latent heat diffuses away more rapidly, and the
bump continues to grow, at least until the stabi-
lizing effect of surface tension (via the curvature
of the interface) becomes comparable. How does
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X

Figure 2: A portion of the crystal boundary S used in

establishing equations (4) for the total free energy 7 and the

“area” of the two-dimensional crystal. (The notation of [9] is

used in this figure.)

this stabilizing effect come about? The surface
molecules on a bump with positive curvature have
fewer nearest neighbors than do those on a plane
surface and are thus more susceptible to being
removed, and the bump will tend to move back to
the plane configuration. This corresponds to a
reduction in the melting temperature of the bump.
Similarly, molecules on the surface of a negatively
curved region have more nearest neighbors and are
more tightly bound; the melting temperature has
been raised.

Thus, a moving interfacial boundary is driven by
a diffusion field gradient and inhibited by curvature-
related forces. A common feature of such compe-
tition between stabilizing and destabilizing influ-
ences is the existence of a characteristic length
scale for the resulting pattern. It is often difficult
to predict the pattern selection principles that op-
erate in these systems. Such patterns, as noted
above, are sensitive to the system geometry and ex-
ternal conditions in general. A valuable review of
pattern formation models in this context can be
found in [17]. Mathematically, the problem of a
moving and developing interface between two dis-
tinct media is a Stefan problem, wherein a nonlin-
ear system evolves dynamically in time. As noted
in [7], this problem is especially interesting when
the interface motion is a nonequilibrium problem,
where the configuration is initially such that the free
energy of the system is not at an absolute minimum.

A very useful resource for mathematicians in-
terested in the subject of crystal formation is the
review in [37]. Therein, an important convex set,
known as the Wulff shape (or equilibrium crystal
shape) is introduced. The equilibrium crystal shape
is the shape which minimizes the total surface free
energy per unit area y(N') for the volume it en-
closes, and its boundary W, is defined as
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1) W, = {r:r-N < y(N)VN}.

y(N) is orientation-dependent, N is the unit nor-
mal vector, and r is the radius vector of any point
on the equilibrium crystal surface (see Figure 1).
W, is determined uniquely by the Wulff Theorem
(or construction), one proof of which is given below.
Another important boundary is the steady-state
growth shape Wy defined by

(2) Wy =1{r:r-N < VIN)VN},

where V() is the growth rate in the direction .
For further references to the Wulff construction,
see [11].

Wulff’s Theorem

In a crystal at equilibrium, the distances of the faces
from the centre of the crystal are proportional to
their surface free energies per unit area [9]. The
proof and notation therein for the two-dimensional
case will be followed here. The fundamental idea
is to relate the equilibrium shape of the “crystal”
to the polar plot of the surface free energy. This
is done via the Wulff construction (again, see
Figure 1), which is the interior envelope of the set
of perpendiculars to radial rays intersecting the
latter [43]. The equilibrium shape is determined
by the requirement that the total free energy for a
given crystal “area” is a minimum.

We consider a point P(x,y) on the boundary S
of the crystal; the polar coordinates of P are (v, ¢).
Here the arc length parameter will be denoted by
0 for consistency with [9], but also to emphasize
that we are dealing with rather general equilib-
rium boundary curves as opposed to the circular
ones discussed in the model below. (Note that 0 will
be used in two other ways in the models below.)
The line segment OM (see Figure 2) is the perpen-
dicular from the origin to the tangent line to S at
P; it has length p. Denoting the edge free energy
per unit length of a boundary element by f(0), the
total free energy F and the area n (related to the
number of molecules) are respectively given by

F- Jf(@)ds _ Jf(@) &2+ 32" do

(3)
1(, . .

and n = 5 J(xy —yx)do,

where X = dx/d0, etc. From the figure and stan-
dard algebra,
p =xcos0 +ysin6.

The locus of M as the point P moves around the
boundary curve S will be the pedal curve of S. The
expression above and its derivative with respect to
0 can be inverted to obtain

Xx=pcosO—psind and y = psin6 + p cos 0.

Hence
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@) F = j(pw)f(e)de and n = H(mﬁ)p(e)da

The total free energy must be minimized subject
to the constraint n = constant. If the choice of
Lagrange multiplier A is made such that we can
define the quantity

5)  QO.p,p.H) =5+ B - Ap + DI,

then the appropriate Euler-Lagrange equation is

0Q d (2Q\ . & [2Q)
(6) E_%<5)+W(E>_O

It follows that

7) (p+p) - Af+f) =0,
with solution
8) p(0) = Csin(0 — 0y) + Af (0)

for arbitrary constants C and 6,. By choosing the
origin in such a way that the crystal has some
rotational symmetry about it, the choice C =0 is
permissible. Then

) p(0) = Af (0),

which establishes that the polar diagram of the edge
free energy is proportional to the pedal of the equi-
librium shape of the crystal.

It is important to note that the steady-state
shape of a crystal is not as general as the Wulff
shape for an equilibrium crystal, because it is not
obtained from an initial value problem. Not all ini-
tial shapes will in fact reach this steady-state shape,
and neither does it indicate what class of geomet-
ric models results in a convex form from an initial
shape. Further details on this and other aspects of
the problem may be found in [41].

A “Toy” Model for Crystal Growth

As a precursor to the more physically significant
models of crystal growth discussed below, let us
examine a specific yet simple evolution equation
for the interface in a two-dimensional geometrical
model and comment on its stability. The model that
follows is not particularly realistic physically—
only the lowest order curvature term is retained to
exhibit the desired behavior of the boundary—but
it must be emphasized that it is merely a mathe-
matical simile; it cannot be derived from the kinetics
of crystal growth for realistic crystals. In fact, a
model of this type is one in which the boundary
layer effectively defines the interface: as noted ear-
lier, the characteristic length scale L is the ratio of
the diffusion coefficient to the interfacial speed, and
this would be true in practice only if the crystal
growth speeds were excessively high. Neverthe-
less, for applied mathematicians, toy models are
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the aesthetic equivalent of “back-of-the-envelope”
calculations for engineers!

If x is the position vector of a point on the
interface corresponding to outward unit normal
N, then we assume that

dx
10 N-— =U(X; s,K),
(10) at (x5 8, K)
where the speed U is a function of the local sur-
face geometry, being dependent on position, and
implicitly on arc length s and curvature k. What
form might U take? One choice is [7]:

0%k

The second term corresponds to the stabilization
mechanism for short wavelengths when y > 0.
Heuristically we may choose the “curvature
potential” V to take the form of a cubic for the
following reasons. A planar interface cannot move
at all (except under very special circumstances),
so V(0) = 0. The growth rate of a spherical crystal
(or circular in two dimensions) behaves like R~! for
large R, so we would expect V =~ ak for small k.
Noting further that a solid with large curvature
will contract due to forces of surface tension, U
must become negative for some value of k. Hence
there must be a minimum “bubble” size for nu-
cleation, and this corresponds to a term —Bk3 in
V, where B is related to the minimum size for nu-
cleation. A quadratic term, px?, is also included in
the expression for V to account for an asymmetry
in the solidification process between the freezing
and the remelting of the dynamic interface, so we
write

(12) V(K) = aK + uk® — Bi3.

Stability Criteria

In terms of the unit tangent vector 7 to the curve
at a point with polar angle 6 (s being arc length
along the boundary curve), the curvature vector k
is variously defined as

k=dT /ds =(dT /d0O)/(ds/dO)
=(dT/do)/ |dx/do|,
where x (0) is the position vector. For a circle with
time-dependent radius r(t) and the special case of

U = V(k) = k (with the unit of length chosen to fix
o =1 [7], [8]), the equation

dx

N'E =U(x; s, K)
reduces to
dr 1
o),

with solution
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(14) r(t) = [2t + r20)]"°.

Performing a linear stability analysis around this
solution, following [8] (see also [42]) we consider
radial perturbations only, because tangential terms
can be eliminated by a suitable gauge transforma-
tion (equivalently, they can be shown to drop out
of the linear stability analysis). Thus

(15) X =T [r(t) + &, 0)].
Then
1 s 04
(16) K=K|=;—-ﬁ<ﬁ+1)£=Ko+Kg,
where ko = r~1, and
0%k 102 )
an St

Since
V (ko + Ke) = V (Ko) + KV’ (Ko) + O(K?),

the linear perturbation &(t,8) may be shown to
satisfy the equation

oe __ Vi) (2
o r (ae)zH)

_La_z(i )
X & 1302 692+1 E.

Seeking eigenfunctions of the form

(18)

(19) &(t, 0) = £, cosmo,

we see that the linear growth rate

Qo) o= "D [V’ (1)- ymz} .

r r2

The m = 1 mode corresponds to a uniform rota-
tion of the circle and is a neutrally stable pertur-
bation. As noted in [8], the first term is stable for
allm (+ 1)if V'(1/r) > 0, and since for sufficiently
large radii V ~ k, this will occur even for nonzero
u and B in the complete expression for V. This sim-
ple result is the analog of the Mullins-Sekerka in-
stability as discussed in [29], [30] (see also [10], [31],
[46]). The second term is always stabilizing for
m > 1 (with y playing a role analogous to that of
surface tension), so this will act to limit the range
of m-values that are in the unstable regime.

More Sophisticated Models

Based on more detailed theoretical physics, how
might the interface evolution of a crystal be char-
acterized mathematically? Following the approach
in [42], we consider the boundary of a two-
dimensional crystal to be represented by the closed
curve C[x(u,t),y (u,t)] in the plane, with time de-
pendent components parametrized by the variable
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u. Let the arc length s be related to u via the rela-
tion

oc’, t) ’ du’

(21) s(u,t) = Jo o

Further, let W = |0C(u, t)/ou| = ds/du. 0 is now
defined to be the angle between the positive x-axis
and the unit tangent vector 7 = (cos 0,sin @) =
W-10C(u, t)/ou, and the unit normal vector N is
inward pointing. The boundary evolves in terms of
the normal velocity function V (0, du) according to

ocC

@ (Y
The initial-value problem with V defined as above
can be solved exactly by the method of character-
istics, since the normal velocity of the interface de-
pends explicitly on the surface orientation alone.
They are rays of the form x(t) = xo + d(0y)t, Xo
being a point on the initial curve, and V (0y; Xo) is
in the direction d (6y). The surface normal direc-
tion is preserved along each characteristic, and so
the curve C at time t is defined by the set of all
points x(t).

To discuss the curvature evolution, both global
and local, we require that the two appropriate
Frenet equations for the unit tangent (7°) and nor-
mal (N') vectors at a point on the boundary curve
are

=-VN.

u

a—lr—=K.']V and aﬂ=—KT,
0s s

(k = 00/0s). If arc length is used to parametrize
these quantities in terms of the closed interfacial
boundary curve C [42], then

2
T(S,t)=g—c, K(s,1) = % :
and N(s,t) = K’l(s,t)ﬁ.
0s2

Following [13] and also [42], we can prove the fol-
lowing identities:

ow 0 0 0

or D KVW [aa] =KV
(24)

0T vV, 020 oV

s = s o T s

Since W is essentially a measure of the length of
an infinitesimal displacement on the boundary,
the differential equation for W represents its rate
of dilation. The corresponding equations in 7" and
0 describe the rotation rates of those quantities,
as determined by the anisotropy of V. After some
subtle reformulation (involving gauge invariance ar-
guments), a nonlocal integrodifferential equation
for the curvature evolution can be derived, namely:
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(25)

oKk (s,t)\ 82_V ) oKk [* ,
( ot )C‘(asZ*KV)‘as ) Vs

As pointed out in [8], when the curve C is parame-
trized by 0 rather than by u or s, then the evolution
equation for k becomes strictly local. This is a
consequence of the fact that its rate of change at
fixed 0 is given by

oK oK 00\ (0K _ 0Ok
e (5),=(50), - (50) (50) = or
Thus
(27) oK _ -k*V(0),

oT
where V = V + V" is named the “velocity stiffness”
in [42]. These results also can be derived by con-
sidering the curve as a set of complex numbers in
the plane [8]. For finite V this equation has solu-
tion
K (0)

28 =
(28) o 1+kO)VT

in terms of the initial curvature x (0).If V > 0, the
curvature will decrease monotonically in time
at nonfaceted orientations for which «(0) = 0.
For orientations in which V < 0, the curvature
diverges at finite time, T = — (K(O) V) ' In fact,
as discussed below, a shock (intersection of
characteristics) develops before the minimum
blow-up time.

In defining a local normal velocity with reference
to a weak “growth drive” ou (the chemical poten-
tial difference between the surface and external
phase), two different kinetic processes are merged
via a convexity type of argument involving a tran-
sition function & () to form an expression for the
local normal velocity of a crystal with n-gonal sym-
metry. This is

(29)
V(0,0u) = Vi (O E(0) + V- (0,61) (1 - £(0)),

where

.
(30) Vi (1) = crg (5p) exp ( kTS ) ,
and

31) V,(0,0u) =c,ou [1 + cos? (%9)] ,

where p is an even integer. V (for facet) is the nor-
mal growth rate at facet orientations under the
“growth drive” éu, while V, (for rough) describes
the normal interfacial motion at vicinal and mole-
cularly rough orientations (due to surface migra-
tion of adsorbed molecules away from facets).
Since 0 < £(0) < 1, this function is a measure of
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the distribution between facetlike and roughlike
growth. It is periodic in 27m/n, and & (6;) = 1,
& (6; + 1t/n) = 0 for a facet orientation 6;. In [42]
the choice of &£(0) = cos™(n0/2), m = p being
even, is made. If in particular 6 = m/4 and n = 4
in the definition of V, then for m=p =2,
V = ¢, 6u + 8V, which implies that the rate of cur-
vature decrease increases with éu. In short, the
polygonalization of crystals corresponds to de-
creasing curvature in rough orientations.

Thus, in general, a crystal has slowly growing
molecularly smooth faces (facets) and more rapidly
growing faces that are rough at the molecular level.
At this level, both structures are sensitive to tem-
perature, as one might expect. Facet locations are
associated with minima of the surface free energy,
and indeed a crystal shape may be only partially
faceted, but a major question for crystal growth is
to find what processes are responsible for the
evolution of an initial “seed crystal” towards a
faceted asymptotic growth shape. This is called
global kinetic faceting and has been observed to
occur experimentally and numerically [26] and has
been predicted theoretically [42]. In this process,
the rough orientations of partially faceted shapes
grow out of existence with decreasing curvature.
Such a decrease implies the presence of disconti-
nuities in surface slope (or a jump in the normal
to the surface), so it is of considerable interest
to be able to tie the time-dependence of the local
curvature to the ultimate shape of the crystal
boundary. Mathematically, discontinuities of this
kind are associated with both singularities in
the interfacial curvature and the intersection of
characteristics [39]. The latter viewpoint, while
complementary to the former, corresponds to the
existence of shocks in the solution of the surface
evolution equation. The dynamics of such shocks,
when they exist, are of great importance in the
interpretation of experimental data. Furthermore,
it has been shown in [41] that if the initial seed
crystal is convex, then convexity is preserved
throughout the whole growth process. Forms of
V that possess cusps at faceted orientations
also explain the formation of expanding facets
separated from rough orientations by a corner,
called shocking facets in [40]. Specifically, in place
of expression (29) for V (0, 6u), now

(32) V(6,51 = V; (S E(0)

where

(33) V,(0,u) = ¢, ou (a |sin 20| — b sin® 29) ,

+V,(0,0u),

where the coefficients a and b are related to cer-
tain angular rates of change. It transpires in this
case that models with the parameter range
2b < a < 7/3b correspond to the formation and ex-
pansion of facets accompanied by decreasing cur-
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vature at rough orientations. Further, if t; is the time
of corner formation, the facet collides with the
shock at t ~ 1.1t, almost immediately after shock
formation, consistent with observations [40].
Green’s Functions

The literature on this subject abounds with exam-
ples of the application of Green’s function tech-
niques to the growth and development of crystals
and might well be a useful source of examples for
graduate classes. This particular analysis is based
on the approach in [40] (but see also [25]). In con-
nection with shocking facets, the temperature field
T around an expanding surface with a constant den-
sity of heat sinks is computed using Green’s func-
tions for the two-dimensional diffusion problem.
The expression for the field at (x, z;t) is

u(x, z; t) = up(x, z)

(34) JdtJ J Gx—-x,z-7i;t-1t)
xQx'z";t)dx'dz’,

where u = (T - T,) /Tw, T being the melt tem-
perature far from the interface. The temperature
field before the formation of a shocking facet is uy,
and the standard Green’s function for the diffusion
problem

(35) [E — kvz] G(x,z;t) = S(x)6(2)5(t)

ot
exo [ — X2 + 72
P 4kt ’

k being the thermal diffusivity of the melt. The
source term is

(37) Q(x,z;t) = gH(vt — x)H(x)6(2),

in terms of the Heaviside step-function H and the
Dirac delta function 6 (remember that distribution
theoretic distinctions and subtleties are usually
suppressed in much of the scientific literature).
The term g is a heat flux constant, proportional
to the surface density of heat sinks. After some
rearrangement

is

(36) G, zt) =

1
4kt

q t esz/4k(r—r’)
4

(38) u(x,z;t) — up(x,z) = 3k ) A

I!
where
—x+n )
= \/4k(t — t’)J e "dn
-
o = X/+/4k(t - t'),
n = vt/\4k(t - t').

Experimentally, the authors found that vt < /4kt.
Under the experimentally reasonable assumption
that n <« 1,
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I ~ nvJ4k(t — t")e ;

whence

u(x, z;t) — up(x, z) = (x, z; t)

39 S -
59 L ¢ _da.
4k Jx2iz2yake A

Noting that the exponential integral [6] is defined
as

=] ef)\
Ei(x) = ——dA
o A
(40) o0

~In0-y+>

n=1

(_1)n+1 9”
n- n!

where Yy is the Euler-Mascheroni constant, it follows
that when (x> + z2)/4kt < 1,

S qut <_
41) ux,z;t) ~ ik y +1n

X2 + 22) '

At the other extreme, for short times such that
4kt < x* + z2, 1 is exponentially small. Using ex-
perimental data, Tsemekhman and Wettlaufer [40]
estimate that the geometric model begins to fail at
t ~ 10s . From this and related observations, the
authors conclude that geometric models of the en-
tire interface are very accurate up to about t = 15s.
Ultimately the model breaks down when g is no
longer constant, and nonlinear effects become sig-
nificant. Studies such as this one confirm that geo-
metric models are very useful in describing the
early stages of the evolution of a crystal surface.
Some of these models predict the possible forma-
tion of a shocking facet and are still applicable for
some time beyond this point. Indeed, according to
Wettlaufer [private communication], even the
timescales cited above do a great injustice to the
utility of the geometric approach: for solid helium
growing from a superfluid, the geometric model is
the only model of significance, and it never breaks
down!

Summary

There are many other mathematical aspects of
crystal formation that have been investigated over
the last several decades. It is a field rich in theory,
experiment, and applications (particularly inter-
esting, for example, but outside the scope of the
present review, is the asymptotic analysis found in
[44], [45]). Interesting theoretical papers on dendrite
formation are presented in the set [20]-[24], [27],
[28]. In addition, many theoretical developments are
to be found outside the “standard” applied math-
ematical literature: some of the papers cited below
are published in the Journal of Crystal Growth,
and Physical Review E, for example, so it is en-
cumbent on those of us interested in entering a field
such as this sometimes to walk in pastures new.
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Personally, I have been both pleasantly surprised
and pleased to encounter such a broad swath of
thoughtfully written papers addressing crystal
growth. T hope that this review will be a useful (but
clearly not exhaustive) resource for readers wish-
ing to pursue the subject further. However, a caveat
is in order: a review of this nature must maintain
a balance between material of interest to mathe-
maticians while at the same time doing justice to
the physics of the problem. Inevitably, the simple
models and oversimplified physical descriptions
presented here will not satisfy crystal theorists, but
as in all topics on the interface between two mag-
isterial disciplines, compromises must be made.
This article is no exception, and I will end it with
awarning: The mathematical physics of snow crys-
tal formation is much more complicated than might
be inferred from the discussion presented here!
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Simulating
Snowflakes

Snowflake formation is very complicated, and one
would not expect a purely theoretical account to
explain all that occurs. There have been many at-
tempts to simulate the process in software. Even
here, the complexities are overwhelming. The prin-
cipal focus of effort has been to understand the ex-
traordinary sixfold planar symmetry of snowflakes
coexisting with a complicated dendritic structure.
All simulation attempts seem to have been in a re-
stricted two-dimensional environment.

The central problem is that the symmetry sug-
gests deterministic growth, the dendritic structure
randomness. Of course some of the randomness
is contributed by a rapidly changing environment.
But although the environment is uniform on the
scale of a snowflake, the symmetry of real
snowflakes is not exact, and this also suggests that
local randomness on the snowflake is important.

Other considerations suggest the role of ran-
domness. It is easy enough to construct dendrites
in software that, at least locally, look somewhat like
snowflakes. The simplest process in which this
happens in a physical manner is diffusion-limited
aggregation, or DLA, in which particles wander
around randomly and stick irreversibly onto a cen-
tral, growing core whenever they hit it.

Diffusion-Limited Aggregation
Particles were initially randomly distributed on a
hexagonal lattice with a single particle in the
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Diffusion-Limited Aggregation. Particles were
initially randomly distributed on a hexagonal
lattice with a single particle in the central core.
The paths show the motion of the particles
wandering in randomly from the boundary of
the region to attach to the core.

central core. The paths show the motion of parti-
cles wandering in randomly from the boundary of
the region to attach to the core.

The characteristic feature of DLA is that bump
growth is unstable: high curvature means a high
gradient in the distribution of particles, which are
therefore attracted to bumps. This instability com-
bined with microscopic randomness presumably
does play a role in snowflake growth.

Diffusion Instability

Bumps attract diffusing particles, which follow the
gradient of a certain potential field. As it grows, the
gradient increases, so a bump grows unstably.

— N

Diffusion Instability. Bumps attract diffusing
particles, which follow the gradient of a certain
potential field. As it grows, the gradient
increases, so a bump grows unstably.

The results of DLA do not look much like
snowflakes. One simple explanation for this is that
dendrites formed in a DLA process are fractal,
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which means that they possess a similar structure
at all scales. In snowflakes surface tension forbids
this and in any realistic simulation must be taken
into account. The combined effect of surface ten-
sion and DLA is to establish a certain characteris-
tic length involved in the growth process.

Up until about 1985 all attempts to simulate
snowflakes built the symmetry in by constructing
one arm and then reflecting and rotating it. But then
Nittman and Stanley showed that a truly random
process could in fact give rise to a good approxi-
mate symmetry without artificial forcing. Their
process was an extension of DLA in which sites next
to the growing core freeze only when they en-
counter several diffusing free particles. This re-
quirement is already one that assures a certain
stability in the process and leads to quasi-sym-
metry but gives rise only to a very restricted range
of snowflake shapes. In addition, they introduced
a somewhat artificial parameter that generates
thicker dendritic arms. With this, quasi-symmetry
is maintained and a wider range of shapes arises.
Unfortunately, their construction seems to have lit-
tle to do with physics.

A much more physically realistic account was
that of Yokoyama and Kuroda (of Hokkaido Uni-
versity). Their simulations involved a fairly de-
tailed account of actual surface motion of molecules
in ice formation, as well as a detailed analysis of
how diffusion behaves at corners. Although ex-
tensive dendritic growth does not occur in their
models, it does not seem too far away.

One recent attempt at imitating snowflakes has
been done with a 2D cellular automaton by Clifford
Reiter. The only randomness built into his con-
struction is in the initial state, however, and al-
though some of his figures do resemble snowflakes,
it is hard to see what this process has to do with
real life.
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