
Chapter 4

Phyllotaxis

The regular arrangement of lateral organs (leaves on a stem, scales on
a cone axis, florets in a composite flower head) is an important aspect
of plant form, known as phyllotaxis. The extensive literature generated
by biologists’ and mathematicians’ interest in phyllotaxis is reviewed
by Erickson [36] and Jean [78]. The proposed models range widely from
purely geometric descriptions (for example, Coxeter [17]) to complex
physiological hypotheses tested by computer simulations (Hellendoorn
and Lindenmayer [59], Veen and Lindenmayer [151], Young [163]). This
chapter presents two models suitable for the synthesis of realistic images
of flowers and fruits that exhibit spiral phyllotactic patterns.

Both models relate phyllotaxis to packing problems. The first oper-
ates in a plane and was originally proposed by Vogel [154] to describe
the structure of a sunflower head. A further detailed analysis was given
by Ridley [124, 125]. The second model reduces phyllotaxis to the
problem of packing circles on the surface of a cylinder. Its analysis was
presented by van Iterson [75] and reviewed extensively by Erickson [36].

The area of phyllotaxis is dominated by intriguing mathematical
relationships. One of them is the “remarkable fact that the numbers of
spirals which can be traced through a phyllotactic pattern are predom-
inantly integers of the Fibonacci sequence” [36, p. 54]. For example,
Coxeter [17] notes that the pineapple displays eight rows of scales slop-
ing to the left and thirteen rows sloping to the right. Furthermore, it is
known that the ratios of consecutive Fibonacci numbers Fk+1/Fk con-
verge towards the golden mean τ = (

√
5 + 1)/2. The Fibonacci angle

360◦τ−2, approximately equal to 137.5◦, is the key to the first model
discussed in this chapter.
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nr       n   ∼ √            

n   1   +

137 5     .         °
n   2   +

137 5     .         °

#define a 137.5 /* divergence angle */
#include D /* disk shape specification */

ω : A(0)
p1 : A(n) : * → +(a)[f(n∧0.5)∼D]A(n+1)

Figure 4.1: Pattern of florets in a sunflower head, according to Vogel’s for-
mula

4.1 The planar model

In order to describe the pattern of florets (or seeds) in a sunflower head,Vogel’s formula
Vogel [154] proposed the formula

φ = n ∗ 137.5◦, r = c
√

n, (4.1)

where:

• n is the ordering number of a floret, counting outward from the
center. This is the reverse of floret age in a real plant.

• φ is the angle between a reference direction and the position vec-
tor of the nth floret in a polar coordinate system originating at
the center of the capitulum. It follows that the divergence an-
gle between the position vectors of any two successive florets is
constant, α = 137.5◦.

• r is the distance between the center of the capitulum and the
center of the nth floret, given a constant scaling parameter c.
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a b c

Figure 4.2: Generating phyllotactic patterns on a disk. These three patterns
differ only by the value of the divergence angle α, equal to (a) 137.3◦, (b)
137.5◦ (the correct value), and (c) 137.6◦.

The distribution of florets described by formula (4.1) is shown in Fig-
ure 4.1. The square-root relationship between the distance r and the Model

justificationfloret ordering number n has a simple geometric explanation. Assum-
ing that all florets have the same size and are densely packed, the total
number of florets that fit inside a disc of radius r is proportional to
the disk area. Thus, the ordering number n of the most outwardly
positioned floret in the capitulum is proportional to r2, or r ∼ √

n.
The divergence angle of 137.5◦ is much more difficult to explain.

Vogel [154] derives it using two assumptions.

• Each new floret is issued at a fixed angle α with respect to the
preceding floret.

• The position vector of each new floret fits into the largest existing
gap between the position vectors of the older florets.

Ridley [125] does not object to these basic assumptions, but indi-
cates that they are insufficient to explain the origin of the Fibonacci
angle, and points to several arbitrary steps present in Vogel’s deriva-
tion. He describes the main weakness as follows:

While it is reasonable to assume that the plant could con-
tain genetic information determining the divergence angle
to some extent, it is completely impossible for this alone to
fix the divergence angle to the incredible accuracy occurring
in nature, since natural variation in biological phenomena
is normally rather wide. For example, for the 55- and 89-
parastichies to be conspicuous, as occurs in most sunflower
heads, d must lie between 21

55
and 34

89
, a relative accuracy of

one part in 1869.

The critical role of the divergence angle α is illustrated in Figure 4.2.
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Figure 4.3: Close-up of a daisy capitulum

Although a comprehensive justification of Vogel’s formula may require
further research, the model correctly describes the arrangement of flo-
rets visible in actual capitula. The most prominent feature is two sets
of spirals or parastichies, one turning clockwise, the other counterclock-Parastichies
wise, which are composed of nearest neighboring florets. The number
of spirals in each set is always a member of the Fibonacci sequence; 21
and 34 for a small capitulum, up to 89 and 144 or even 144 and 233 for
large ones. For example, the capitulum of a daisy (Figure 4.3) exhibits
34 clockwise spirals and 21 counterclockwise spirals, with directions
determined by following the spirals outwards from the capitulum cen-
ter. In the image of a domestic sunflower capitulum (Figure 4.4), one
can discern 34 spirals running clockwise and 55 spirals running counter-
clockwise. The number of perceived spirals depends on the capitulum
size expressed in terms of the number of component florets. If the field
of attention is limited to a circle approximately 2/3 the size of the en-
tire sunflower capitulum in Figure 4.4, the number of discernible spirals
becomes 34 and 21.

Figure 4.4: Domestic sunflower head �
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#define S /* seed shape */
#define R /* ray floret shape */
#include M N O P /* petal shapes */

ω : A(0)
p1 : A(n) : * → +(137.5)[f(n∧0.5)C(n)]A(n+1)
p2 : C(n) : n <= 440 → ∼S
p3 : C(n) : 440 < n & n <= 565 → ∼R
p4 : C(n) : 565 < n & n <= 580 → ∼M
p5 : C(n) : 580 < n & n <= 595 → ∼N
p6 : C(n) : 595 < n & n <= 610 → ∼O
p7 : C(n) : 610 < n → ∼P
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The dependence of the number of parastichies on the size of the
field of attention is yet another intriguing aspect of spiral phyllotaxis,
as pointed out in the following excerpt from a letter by Alan Turing 1

quoted in [18]:

According to the theory I am working on now there is a
continuous advance from one pair of parastichy numbers to
another, during the growth of a single plant. . . . You will
be inclined to ask how one can move continuously from one
integer to another. The reason is this — on any specimen
there are different ways in which the parastichy numbers can
be reckoned; some are more natural than others. During the
growth of a plant the various parastichy numbers come into
prominence at different stages. One can also observe the
phenomenon in space (instead of in time) on a sunflower.
It is natural to count the outermost florets as say 21 + 34,
but the inner ones might be counted as 8 + 13. . . . I don’t
know any really satisfactory account, though I hope to get
one myself in about a year’s time.

A complete model of a flower head, suitable for realistic image syn-
thesis, should contain several organs of various shapes. This is easily
achieved by associating different surfaces with specific ranges of the in-
dex n. For example, consider the L-system that generates the sunflower
head (Figure 4.4). The layout of components is specified by produc-Sunflower head
tion p1, similar to that of the L-system in Figure 4.1. Productions p2

to p7 determine colors and shapes of components as a function of the
derivation step number. The entire structure shown in Figure 4.4 was
generated in 630 steps. Alternatively, random selection of similar sur-
faces could have been employed to prevent the excessive regularity of
the resulting image.

Other extensions to the basic model consist of varying organ orien-
tation in space and changing their altitude from the plane of the head
as a function of n. For example, the sunflower plants included in Fig-
ure 4.5 have flowers in four developmental stages: buds, young flowers
starting to open, open flowers and older flowers where the petals begin
to droop. All flowers are generated using approximately the same num-
ber of florets. The central florets are represented by the same surface at
each stage. The shape and orientation of surfaces representing petals
vary from one stage to another. The plants have been modeled as di-
botryoids, with a single signal inducing a basipetal flowering sequence,
as described in the previous chapter.

1To computer scientists, Alan Turing is best known as the inventor of the Turing
machine [146], which plays an essential role in defining the notion of an algorithm.
However, biologists associate Turing’s name primarily with his 1952 paper, “The
chemical basis of morphogenesis” [147], which pioneered the use of mathematical
models in the study of pattern formation and advocated the application of comput-
ers to simulate biological phenomena.
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Figure 4.5: Sunflower field
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Figure 4.6: Zinnias

The zinnias (Figures 4.6 and 4.7) illustrate the effect of changing aOther examples
petal’s altitude, size and orientation as a function of n. The height at
which a petal is placed decreases by a small amount as n increases. The
size of each successive petal is incremented linearly. The orientation is
also adjusted linearly by a small angle increment. Thus, petals with
small values of index n are placed more vertically, while petals with
larger indices n are more horizontal. Although the family Compositae
offers the most examples of phyllotactic patterns, the same model can
be applied to synthesize images of other flowers, such as water-lilies
(Figures 4.8 and 4.9) and roses (Figure 4.10).

Figure 4.7: Close-up of zinnias �
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Figure 4.8: Water-lily

Figure 4.9: Lily pond
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Figure 4.10: Roses

4.2 The cylindrical model

The spiral patterns evident in elongated organs such as pine cones, Basic model
fir cones and pineapples, can be described by models that position
components, in this case scales, on the surface of a cylinder. Van Iterson
[75] divides phyllotactic patterns on cylinders into simple and conjugate
ones. In the case of a simple arrangement, all components lie on a single
generative helix. In contrast, conjugate patterns consist of two or more
interleaved helices. This paper discusses simple phyllotactic patterns
only. They are generally characterized by the formula

φ = n ∗ α, r = const, H = h ∗ n, (4.2)

where:

• n is the ordering number of a scale, counting from the bottom of
the cylinder;

• φ, r and H are the cylindrical coordinates of the nth scale;

• α is the divergence angle between two consecutive scales (as in
the planar case, it is assumed to be constant); and

• h is the vertical distance between two consecutive scales (mea-
sured along the main axis of the cylinder).
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A parametric L-system that generates the pattern described by for-Implementation
using
L-systems

mula (4.2) is given in Figure 4.11. The operation of this L-system
simulates the natural process of subapical development characterized
by sequential production of consecutive modules by the top part of the
growing plant or organ. The apex A produces internodes f(h) along
the main axis of the modeled structure. Associated with each intern-
ode is a disk ∼D placed at a distance r from the axis. This offset is
achieved by moving the disk away from the axis using the module f(r),
positioned at a right angle with respect to the axis by &(90). The spi-
ral disk distribution is due to the module /(a), which rotates the apex
around its own axis by the divergence angle in each derivation step.

In the planar model, the constant divergence angle α = 137.5◦ isAnalysis of
model geometry found across a large variety of flower heads. The number of perceived

parastichies is determined by the capitulum size, and it changes as the
distance from the capitulum center increases. In contrast, a phyllotactic
pattern on the surface of a cylinder is uniform along the entire cylinder
length. The number of evident parastichies depends on the values of
parameters α and h. The key problem, both from the viewpoint of
understanding the geometry of the pattern and applying it to generate
synthetic images, is to express the divergence angle α and the vertical
displacement h as a function of the numbers of evident parastichies en-
circling the cylinder in the clockwise and counterclockwise directions. A
solution to this problem was proposed by van Iterson [75] and reviewed
by Erickson [36]. Our presentation closely follows that of Erickson.

The phyllotactic pattern can be explained in terms of circles packed
on the surface of the cylinder. An evident parastichy consists of a
sequence of tangent circles, the ordering numbers of which form an
arithmetic sequence with difference m. The number m is referred to as
the parastichy order. Thus, the circles on the cylinder surface may be
arranged in two congruent 2-parastichies, five congruent 5-parastichies,
and so on. The angular displacement between two consecutive circles
in an m-parastichy is denoted by δm. By definition, δm belongs to the
range (−π, π] radians. The relation between the angular displacement
δm and the divergence angle α is expressed by the equation

δm = mα − ∆m2π, (4.3)

where ∆m is an integer called the encyclic number. It is the number
of turns around the cylinder, rounded to the nearest integer, which
the generative helix describes between two consecutive points of the
m-parastichy.

Usually, one can perceive two series of parastichies running in oppo-
site directions (Figure 4.11). The second parastichy satisfies an equa-
tion analogous to (4.3):

δn = nα − ∆n2π (4.4)

Consider the m- and n-parastichies starting at circle 0. In their paths
across the cylinder, they will intersect again at circle mn. Assume
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#define a 137.5281 /* divergence angle */
#define h 35.3 /* vertical displacement */
#define r 500 /* component offset from main axis */
#include D /* disk shape specification */

ω : A
p1 : A : * → [&(90)f(r)∼D]f(h)/(a)A

Figure 4.11: Parastichies on the surface of a cylinder and on the unrolled
cylinder. The L-system generates the cylindrical pattern.

that m and n are relatively prime; otherwise the phyllotactic pattern
would have to contain several circles lying at the same height H and,
contrary to the initial assumption, would not be simple. The circle
mn is the first point of intersection between the m-parastichy and the
n-parastichy above circle 0. Consequently, the path from circle 0 to mn
along the m-parastichy, and back to 0 along the n-parastichy, encircles
the cylinder exactly once. The section of m-parastichy between circles 0
and mn consists of n+1 circles (including the endpoints), so the angular
distance between the circles 0 and mn is equal to nδm. Similarly, the
distance between circles 0 and mn, measured along the n-parastichy,
can be expressed as mδn. As a result,

nδm − mδn = ±2π. (4.5)
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mn

0 0

mnh

βγ

mδn nδm

Figure 4.12: An opposite parastichy triangle (as in Erickson [36, Fig. 3.8]).
The base is formed by the circumference of the cylinder. The sides are
formed by the parastichies.

The signs in equation (4.5) correspond to the assumption that the spi-
rals encircle the cylinder in opposite directions; thus one of the values
δ is positive and the other one is negative. Substituting the right sides
of equations (4.3) and (4.4) for δm and δn yields

n∆m − m∆n = ±1. (4.6)

To further analyze the pertinent geometric relationships, the cylin-
der is cut along the vertical line passing through the center of circle 0
and “unrolled” (Figure 4.11). The two parastichies and the circumfer-
ence of the cylinder passing through point 0 form a triangle as shown
in Figure 4.12. The perpendicular to the base from point mn divides
this triangle into two right triangles. If d denotes the diameter of the
circles, then

(nδm)2 + (mnh)2 = (nd)2

and
(mδn)2 + (mnh)2 = (md)2.

The above system of equations can be solved with respect to h and d:

h =
√

(δ2
m − δ2

n)/(n2 − m2) (4.7)

d =
√

(n2δ2
m − m2δ2

n)/(n2 − m2) (4.8)

or, taking into consideration equation (4.5),

d =
√

2π(nδm + mδn)/(n2 − m2). (4.9)
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Figure 4.13: Patterns of tangent circles drawn on the surface of a cylinder
as a function of circle diameter

The problem is to determine values of δm and δn. They are not
simply functions of parameters m and n. Figure 4.13 shows that, for a
given m and n, the values of δm and δn can be chosen from a certain
range, yielding parastichies of different steepness. In order to determine
this range, observe that at its limits the phyllotactic pattern changes;
one previously evident parastichy disappears and another is formed.
Thus, at the range limit, three evident parastichies coexist. It follows
from Figure 4.13 that at one end of the range the third parastichy has
order |m−n|, and at the other end it has order (m+n). Three coexisting
parastichies imply that each circle is tangent to six other circles. In
other words, all circles lie in the vertices of a regular hexagonal grid,
as seen in Figure 4.13a and c. Consequently, the angle β + γ at vertex
mn (Figure 4.12) is equal to 2π/3. Expressing the base of the triangle
in terms of its two sides and their included angle results in

(2π)2 = (nd)2 + (md)2 − 2(nd)(md) cos(2π/3)

or, after simplification,

d = 2π/
√

m2 + mn + n2. (4.10)

Equations (4.9) and (4.10) yield

nδm + mδn = 2π(n2 − m2)/(m2 + mn + n2). (4.11)
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Solving the system of equations (4.5) and (4.11) with respect to δm

and δn produces

δm = π(m + 2n)/(m2 + mn + n2) (4.12)

and
δn = π(2m + n)/(m2 + mn + n2). (4.13)

Given the values of δm and δn, the divergence angle α can be found
from either equation (4.3) or (4.4), assuming that the encyclic numbers
∆m or ∆n are known. It follows from the definition that these numbers
are the smallest positive integers satisfying equation (4.6). A system-
atic method for solving this equation, based on the theory of continuous
fractions, is presented by van Iterson [75]. Erickson [36] points out that
in practice the solution can often be found by guessing. Another pos-
sibility is to look for the smallest pair of numbers (∆m, ∆n) satisfying
(4.6) using a simple computer program.

In conclusion, a phyllotactic pattern characterized by a pair of num-Pattern
construction bers (m,n) can be constructed as follows:

1. Find ∆m and ∆n from equation (4.6).

2. Find the range of admissible values of the angular displacements
δm and δn. The limits can be obtained from equations (4.12) and
(4.13) using the values of m and n for one limit, and the pair
(min{m,n}, |m − n|) for the other.

3. For a chosen pair of admissible displacement values δm and δn,
calculate the divergence angle α from equation (4.3) or (4.4) and
the vertical displacement h from equation (4.8).

4. Find the diameter d of the circles from equation (4.8).

The diameter d does not enter directly in any formula used for
image synthesis, but serves as an estimate of the size of surfaces to
be incorporated in the model. This algorithm was applied to produce
Table 4.1 showing parameter values for which three parastichies coexist.Triple-contact

patterns Given a pattern with two parastichies, this table provides the limits of
the divergence angle α. For example, a (5,8) pattern can be formed for
values of α ranging from 135.918365◦ to 138.139542◦, which correspond
to the patterns (3,5,8) and (5,8,13), respectively.

Further information relating the divergence angle α to the verti-
cal displacement h for various phyllotactic patterns is shown in Fig-
ure 4.14. The arcs represent parameters of patterns with two paras-
tichies (m,n). The branching points represent parameters of patterns
with three parastichies (m,n,m + n).
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m,n,m+n α (degrees) h d

(1, 1, 2) 180.000000 1.81380 -
(1, 2, 3) 128.571426 0.777343 2.374821
(1, 3, 4) 96.923073 0.418569 1.742642
(2, 3, 5) 142.105270 0.286389 1.441462
(1, 4, 5) 77.142860 0.259114 1.371104
(3, 4, 7) 102.162163 0.147065 1.032949
(3, 5, 8) 135.918365 0.111049 0.897598
(2, 5, 7) 152.307693 0.139523 1.006115
(1, 5, 6) 63.870968 0.175529 1.128493
(4, 5, 9) 79.672134 0.089203 0.804479
(4, 7, 11) 98.709671 0.058510 0.651536
(3, 7, 10) 107.088600 0.068878 0.706914
(3, 8, 11) 131.752579 0.056097 0.637961
(5, 8, 13) 138.139542 0.042181 0.553204
(5, 7, 12) 150.275223 0.049921 0.601820
(2, 7, 9) 158.507462 0.081215 0.767613

Table 4.1: Cylinder formula values for triple-contact patterns
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Figure 4.14: The vertical displacement h as a function of the divergence
angle α for various phyllotactic patterns
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Figure 4.15: Pineapples

Models of fruits synthesized using the cylindrical model are shown in
Figures 4.15 and 4.16. The pineapple (Figure 4.15) is an examplePineapple
of a pattern where a given scale has six neighbors, which belong to
5-, 8- and 13-parastichies. The corresponding divergence angle α is
equal to 138.139542◦. The spruce cones (Figure 4.16) were generatedSpruce cones
using the values m = 5, n = 8 and α = 137.5◦ (the divergence angle
α for a (5, 8)-parastichy pattern belongs to the interval 135.918365◦ to
138.139542◦). From these values, h and d were calculated as a function
of the radius of the cylinder. The effect of closing the bottom and
top of the pineapple and spruce cones was achieved by decreasing the
diameter of the cylinder and the size of the scales.

A variant of the model of phyllotaxis on a cylinder can be used to
model organs that are conical rather than cylindrical in shape. For
example, Figure 4.17 shows a model of the sedge Carex laevigata. L-Sedge
system 4.1 generates the male spike. Production p1 specifies the basic
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Figure 4.16: Spruce cones

Figure 4.17: Carex laevigata: the male spike, the entire shoot, the female
spike
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#define IRATE 1.025 /* internode growth rate */
#define SRATE 1.02 /* spikelet growth rate */
#include M /* spikelet shape specification */

ω : A
p1 : A : * → [&(5)f(1)∼M(1)]F(0.2)/(137.5)A
p2 : M(s) : s<3 → M(s*SRATE)
p3 : f(s) : s<3 → f(s*SRATE)
p4 : &(s) : s<15→ &(s*SRATE)
p5 : F(i) : i<1 → F(i*IRATE)

L-system 4.1: The male spike of Carex laevigata

layout of the spikelets, similar to that given by the L-system in Fig-
ure 4.11. The top portion of the spike has a conical shape due to the
growth of spikelets for some time after their creation by the apex. Ac-
cording to production p2, a spikelet grows by factor SRATE in each
derivation step, until it reaches the threshold size of 3. In an analogous
way, productions p3, p4 and p5 capture the distance increase between
spikelets and the spike axis, the increase of the branching angle, and
the elongation of internodes.

The models of phyllotaxis deal with the arrangement of organs in
space. For the purpose of mathematical analysis their shape is reduced
to a simple geometric figure, usually a circle. However, in realistic
images the exact shape of the organs must be captured as well. Several
techniques suitable for this purpose are outlined in the next chapter.


