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In 1981, De Bruijn [DeB81] showed that the 
Penrose tiling had a second construction, as the 
projection of a slice of a five dimensional lattice. 
This led to the development of a general 
construction, known as the canonical projection 
method, that has been extensively studied in the 
quest to understand the mathematics behind 
quasicrystals and aperiodic order [BM00]. 

For the canonical projection method one star ts 
with a lattice L in an n-dimensional space, and an 
m-dimensional subspace S. One then considers 
the region given by all possible translations of 
the unit cell of the lattice, U along S, (U+S). The 
intersection of this strip with the lattice gives a 
set of points. The projection of this set of points, 
connected by the lattice generators, gives a tiling of the subspace. If the subspace only 
intersects the lattice at 0, it is called totally irrational and the tiling will be non-periodic. This is 
perhaps better explained with an example shown in Figure 7. 

Given this general construction a 
natural question is to ask if there 

are other examples, like the 
Penrose which can also have a 
substitution rule. Recently the 
work of H and L has given a 
complete characterisation of 
all such tilings [Har03], giving 
many new examples, such as 
Figure 8.  This result is also 
opening up the study of 
substitution tilings, being the 
first step in the 
characterisation of all such 
tilings.

Aperiodic Tiling
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Figure 6: Take two patches of the Penrose tiles (a). These patches can be considered as larger tile (or 
super tiles) as they fit together in the same way as the original two tiles (b). This gives some overlaps 
but the overlapping tiles overlap entirely. We may therefore build up the same patches with these 
larger tiles (c). The larger tiles can then be replaced by their respective patches (d). 

Such a system is called a substitution rule. In general it consists of two stages. Firstly the tiles are 
enlarged (getting the larger tiles in (b)) and then the larger tiles are replaced by patches of the original 
tiles. Repeating this process gives larger and larger patches. This shows that the tiles will tile the whole 
plane.

Penrose Rhombs

Figure 5: The Penrose Rhombs. 

Quasicrystals
In crystallography, something is considered to be ordered and a crystal if its diffraction pattern has 
sharp peaks (called Bragg peaks). It had always been assumed that such structures had to be periodic. 
In three dimensions, the only possible 
rotational symmetries for a periodic 
structure are two, three, four and six. 
Thus it was a shock when, in 1984, 
Shechtmann et al. [SBGC84], found 
metallic crystals whose diffraction 
pattern had five fold rotational 
symmetry. 

This opened the way to a new class of 
crystals, named quasicrystals. These 
materials have an ordered structure 
and their diffraction patterns have 
sharp peaks, but are not periodic. 

Interest in aperiodic tilings really 
exploded with this discovery. The 
Penrose tiling (and its three 
dimensional analogue) were found to be one of the best models for the structure of these 
quasicrystals. 

In fact the same tilings and patterns turn up in many areas of physics where aperiodic order is being 
discovered, another example is in Faraday wave patterns [EF94]. 

Figure 4: An Al-Pd-Re quasicrystal. Image from [FXetal02] 
courtesy of I.R. Fisher, Stanford.

Figure 7: The Fibonacci tiling of the line, 
described in the text. The lattice is the 
set of dots. The sloping line is S, the 
square U and the orange strip U+S. The 
tiling is given on the line with two tiles.

Figure 8: A substitution tiling found using the 
projection method and the results of H and L.

Figure 5: TEM micrograph and diffraction pattern (inset) of an Al-Pd-Re quasicrsytal, both
along an axis of five-fold symmetry Image from [FXetal02] courtesy of I.R. Fisher, Stanford.

Canonical Substitution Tilings

Figure 1: A periodic tiling of the plane with regular 
hexagons, squares and equilateral triangles.

Figure 2: Using periodicity to show that
a tiling tiles the plane. 

From the pictures of Escher to the geometric patterns of Islamic art, repeating patterns and tiling have 
been used to generate many beautiful images. They have also been considered as part of mathematics 
for a long time, back at least to the ancient Greeks. More recently the study of tilings has been 
instrumental in understanding symmetry, which has led to group theory and key results in 
understanding the structure of crystals. All these results, however, have only considered periodic 
patterns. Since the 1960's a new area has emerged; the study of tilings and patterns that are ordered 
but not periodic. This is the area of aperiodic tilings. 

A key question in the study of tilings is to 
decide whether a set of tiles can tile the plane. 
The simplest way to do this is to exploit 
periodicity. A periodic tiling repeats in such a 
way that it can be picked up, moved some 
distance and put down, so it fits exactly on top 
of itself. It is hard to draw tilings covering an 
infinite plane. So, we work with small regions 
of tiling, called patches. Patches of periodic 
tilings are everywhere, from the square tiles in 
bathrooms and on chess boards, to bricks and 
honeycombs. Another example is shown in 
Figure 1. To show that a set of tiles can tile 
periodically one finds a patch of tiles that fits 
together with itself, as shown in Figure 2. For 
most of the history of tiling, the tilings 
considered were periodic. In fact, most people 
believed that every set of tiles that could tile the plane could do so in a periodic way. 

In 1966, following a question of Wang [Wan61], Robert Berger [Ber66] showed that this is not the 
case. Berger produced an aperiodic set of tiles, that is a set of tiles that can tile the plane, but not 

periodically, but it had 20426 different tiles! This number was gradually reduced until, in 
the 1970's, Roger Penrose discovered the famous Penrose tiling (announced by 

Martin Gardner in [Gar77]), with only two different tiles. This beautiful tiling 
forms the background for this poster. The question of whether a single 

aperiodic tile exists is till open.

How does one show that a set of tiles can tile the plane 
without using periodicity? The answer is a system called a 
substitution rule, described here for the Penrose Rhombs. 
Substitution rules are important in their own right, as 
examples of scaling symmetry.  The work of H and L is 
starting to give a detailed theory of these fascinating 
tilings.

The two Penrose Rhomb tiles are shown in Figure 5. They 
tile the plane, but not periodically. How then does one 
show that they can tile the plane? The answer is a trick 
called a substitution rule, illustrated below. Substitution 
rules are in fact tightly linked to aperiodic tilings, 
Goodman-Strauss [GS98] showed that any substitution 
rule satisfying some basic conditions could be used to find 
an set of aperiodic tiles.
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