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Abstract

In this paper, we explore an interesting connection between the two fun-
damental mathematical constants, pi π and phi φ, by means of the regular
polygons with an odd number of sides and the Golden Numbers, which we
defined in our earlier paper [Anderson and Novak (2008)]. We note that
phi is the smallest of the Golden Numbers and show that pi is related
to the largest of them. Because the Golden Numbers may be interpreted
geometrically as the ratios of the lengths of the diagonals to the lengths of
the sides of odd-sided regular polygons, this connection between phi and
pi has a geometric interpretation. As phi is the ratio of the diagonal to
the side (one-fifth the periphery) of a regular pentagon, so pi is the limit
of the ratio of the periphery to the longest diagonal of polygons as the
number of their sides increases without limit. We define several functions
of the number of sides of regular polygons that describe the properties
of polygons and study them as this number increases from 5 to ∞, as a
polygon is transformed from a pentagon to a circle.

1 Introduction

The two real numbers π and φ are of fundamental importance in mathematics.
The purpose of this paper is to show how they are related to each other numer-
ically and geometrically. We shall show that the two numbers are connected
numerically by means of the Golden Numbers, a set of real numbers that we
defined in our paper [Anderson and Novak (2008)] on generalized Fibonacci se-
quences and regular polygons. The number φ, generally known as the Golden
Ratio, is simply the smallest of the Golden Numbers. The number π, the ratio
of the circumference to the diameter of a circle, is related to the largest of the
Golden Numbers.

The two numbers are connected to one another geometrically by means of
the sequence of regular polygons with an odd number 2n+ 1 of sides, where n
ranges from 2 to ∞. The number φ is defined in the case n = 2 of the regular
pentagon, which has five 2n + 1 = 5 sides. It is the ratio of the length of a

1



diagonal to the length of a side or, thus, 2n + 1 times the diagonal divided
by the periphery. The number π is defined at the other end of the sequence,
as the number of sides of a polygon increases without limit and the polygon
approximates a circle. It is the limit of the ratio of the periphery (approximating
the circumference) to the longest diagonal (approximating the diameter) or,
thus, the limit of 2n+ 1 times the side divided by the longest diagonal.

In the next Section, we review our work on the Golden Numbers and show
that the Golden Ratio φ is the smallest of them. In the last Section, we define
several quantities that pertain to regular polygons of 2n + 1 sides and study
how they vary as functions of the order number n. We find that, over the range
from n = 2 to n = ∞, these functions all increase slowly, by less than 7%.
The function that we call the pseudopi function varies the least, by less than
2%, from 5

φ at n = 2 to π at n = ∞, demonstrating an intriguing relationship
between π and φ, two numbers of fundamental mathematical importance.

2 The Golden Numbers

The Fibonacci sequence is related to the geometry of the regular pentagon by
means of the Golden Ratio φ, which is the ratio of the length of a diagonal
to the length of a side and has the approximate value 1.618033989. Follow-
ing the work of George Raney [Raney (1966)], we showed in an earlier paper
[Anderson and Novak (2008)] that the generalized Fibonacci sequences of order
n are related to the regular polygons having 2n+ 1 sides by a set of n− 1 num-
bers, rn(i), where i = {2, . . . , n}, that we call Golden Numbers. We derived a
simple trigonometric formula to calculate the Golden Numbers.

In order to state this formula, let us summarize the relevant features of
the geometry of regular odd-sided polygons. Such a polygon has 2n + 1 equal
sides of length dn(1). It also has 2n + 1 diagonals of n − 1 different lengths,
dn(i), where i is the index of the diagonals, ranging from the shortest dn(2) to
the longest dn(n). All the angles between the diagonals and the sides of such a
polygon are integral multiples of a minimum angle αn

αn =
π

2n+ 1
(2.1)

where π ≈ 3.141592654 is the equivalent in radian measure of 180◦.
We can now state the formula for the Golden Numbers. The Golden Num-

ber rn(i) is the ratio of the length of a diagonal of index i, dn(i), to the length
of a side dn(1) of a regular polygon having 2n+ 1 sides.

rn(i) =
dn(i)
dn(1)

=
sin iαn
sinαn

=
sin( iπ

2n+1 )
sin( π

2n+1 )
(2.2)
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The smallest Golden Number r2(2) is the Golden Ratio φ.

r2(2) =
d2(2)
d2(1)

=
sin 2α2

sinα2
=

sin 2π
5

sin π
5

= 2 cos
π

5
= 2 cos 36◦ = φ ≈ 1.618033989 (2.3)

Our earlier paper contains a Table of the first few Golden Numbers, calculated
from equation (2.2).

While the number φ is the smallest Golden Number, the number π is re-
lated to the largest Golden Numbers. As the number of sides 2n + 1 of the
polygon increases without limit, the polygon approaches a circle. The periph-
ery of the polygon cn, which is 2n + 1 times the side length dn(1), approaches
the circumference of the circle.

cn = (2n+ 1) · dn(1) (2.4)

The longest diagonal of the polygon dn(n), approaches the diameter of the circle.
Thus, the number π, which is defined as the ratio of the circumference to the
diameter of the circle, may be found in the limit as n → ∞ of the ratio of the
periphery to the longest diagonal of the polygon or, thus, as 2n + 1 times the
reciprocal of the ratio of the longest diagonal dn(n) to the side dn(1), which is
the largest Golden Number rn(n) for that odd-sided polygon of order n.

π = lim
n→∞

cn
dn(n)

= lim
n→∞

(2n+ 1) · dn(1)
dn(n)

= lim
n→∞

2n+ 1
rn(n)

≈ 3.141592654 (2.5)

The two fundamentally important real numbers φ and π are connected
numerically by the Golden Numbers rn(i). The number φ is simply the smallest
of them, r2(2), while π is related to the largest of them, as the limit as n→∞
of 2n+ 1 times the reciprocal of the largest Golden Number for that value of n,
rn(n).

Another way to represent this numerical connection is to consider the se-
quence of values of what we call the inverse of the pseudopi function of n, π−1

n ,
defined as the ratio of the largest Golden Number of order n, rn(n), to the
number of sides, 2n+ 1.

π−1
n =

rn(n)
2n+ 1

(2.6)

At the low end of its domain, for n = 2, this function has the value

π−1
2 =

φ

5
≈ 0.323606797 (2.7)

At the the high limit of its domain, as n→∞, it has the value

π−1
∞ =

1
π
≈ 0.318309886 (2.8)

a decrease in value of about 1.6%. The number φ (divided by 5) is connected
to (the reciprocal of) the number π by a chain, an infinite sequence of numbers
that vary by less than 2%.

3



3 Functions of Polygons

In this section, we further explore the relationship between the two numbers π
and φ by defining several functions of the order n that represent the proper-
ties of polygons and studying how they vary as the order n increases from 2,
describing the pentagon, to ∞, describing the circle. As we vary the order n,
there are at least two options. One, we keep the polygon’s side length fixed;
then, as n increases, the size of the polygon, as measured by the diameter of
the circumscribed circle, increases without limit. Two, we keep the size of the
polygon fixed, that is, we fix the diameter of the circumscribed circle; then, as n
increases, the side length decreases toward 0. Here, we select the second option,
because it is easier to compare polygons of the same size. We assume that the
diameter d of the circumscribed circle is fixed for all n and that, therefore, the
side length dn(1) varies as a function of n, and decreases to 0, as n increases
without limit.

dn(1) = d · sinαn = d · sin π

2n+ 1
(3.1)

Before proceeding further, let us first note a few useful relationships between
the Golden Ratio φ and trigonometric functions of α2, the minimal angle in the
case n = 2 of the regular pentagon.

φ =
d2(2)
d2(1)

=
sin 2α2

sinα2
= 2 cosα2 (3.2)

sinα2 = sin
π

5
= sin 36◦ =

√
1− φ2

4
≈ 0.587785252 (3.3)

sin 2α2 = sin
2π
5

= sin 72◦ = φ

√
1− φ2

4
≈ 0.951056516 (3.4)

We now define several variables that pertain to regular odd-sided polygons
as functions of the order n and calculate their numerical values for n = 2 and
for n = ∞. First, the circumference cn function of n is the periphery, 2n + 1
times the side length dn(1).

cn = (2n+ 1) · dn(1) = (2n+ 1) · sinαn · d (3.5)

c2 = 5 sinα2 · d = 5

√
1− φ2

4
· d ≈ 2.938926262 · d (3.6)

c∞ = πd ≈ 3.141592654 · d (3.7)

The greatest diagonal length we call the pseudodiameter dn function of n.

dn = dn(n) = dn(1)
sinnαn
sinαn

= sinnαn · d (3.8)

d2 = d2(2) = sin 2α2 · d = φ

√
1− φ2

4
· d ≈ 0.951056516 · d (3.9)
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d∞ = d (3.10)

The ratio of the circumference to the pseudodiameter we call the pseudopi
πn function of n.

πn =
cn
dn

=
(2n+ 1) sinαn

sinnαn
(3.11)

π2 =
5 sinα2

sin 2α2
=

5
φ
≈ 3.090169944 (3.12)

π∞ = π ≈ 3.141592654 (3.13)

In defining a function of n that equals φ when n = 2, there are at least
two options, the ratio of dn(n), the pseudodiameter, to either dn(1), the side
length of the 2n + 1 sided polygon, or d2(1), the side length of the 5 sided
polygon, the pentagon. We reject the former option, because, as n increases, it
it unbounded. We select the latter option as our pseudophi φn function of n.
Note that the pseudophi function is essentially the same as the pseudodiameter
function, except for a normalizing factor.

φn =
dn(n)
d2(1)

=
sinnαn
sinα2

=
dn

d sinα2
(3.14)

φ2 = φ ≈ 1.618033989 (3.15)

φ∞ =
1

sinα2
=

1√
1− φ2

4

≈ 1.701301617 (3.16)

Finally, let us examine the product of the pseudopi πn and the pseudophi
φn functions of n. Note that this product is essentially the same as the circum-
ference function, except for a normalizing factor.

πn · φn =
(2n+ 1) · sinαn

sinα2
=

cn
d sinα2

(3.17)

π2 · φ2 = π2 · φ = 5 (3.18)

π∞ · φ∞ = π · φ∞ =
π√

1− φ2

4

≈ 5.34479666 (3.19)

Compare these values with the product of the numbers pi π and phi φ.

π · φ = π∞ · φ2 ≈ 5.083203692 (3.20)

You will have noticed that all of these functions of n vary slowly. The value
of each at n = ∞ is greater than that at n = 2 by less than 7%. The least
rapidly varying is the pseudopi function, the value of which at n =∞, π, is less
than 2% greater than its value at n = 2, 5

φ .
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4 Conclusion

In our earlier paper [Anderson and Novak (2008)] on generalized Fibonacci se-
quences and the geometry of polygons with an odd number 2n+ 1 of sides, we
defined the Golden Numbers rn(i). In this paper, we have shown that these
Golden Numbers provide a means to connect the two fundamental real num-
bers, pi π and phi φ. Specifically, we show that what we call the inverse of the
pseudopi function of the order n, defined as the ratio of rn(n) to 2n + 1, is a
chain that links these two special numbers, as it decreases by less than 2% from
its value at n = 2, φ5 , to its value as n→∞, 1

π . We also studied several increas-
ing functions of the order n that represent geometrical properties of odd-sided
polygons. We find it interesting that they all vary so little over the domain
from n = 2 to n = ∞, and that the pseudopi function varies the least of all.
We find it intriguing that the pseudopi and the pseudophi functions should be
so closely related. This study suggests an interesting relationship between the
two fundamental real numbers, π and φ, but we believe that it barely begins to
reveal the depth of the relationship between these two absolutely fundamental
real numbers.

References

[Anderson and Novak (2008)] Stuart Anderson and Dani Novak, “Generalized
Fibonacci Sequences and Regular Polygons,” TBD, TBD, TBD (2008).

[Raney (1966)] George N. Raney, “Generalization of the Fibonacci Sequence to
n Dimensions,” Can. J. Math., 18, 332-349 (1966).

6


